AN10004 4

ISP1581 Programming Guide

e Rev. 04 — 1 March 2004 Application note 1

Document information

Info

Content

Keywords

ISP1581, USB, programming guide

Abstract

This programming guide provides a brief introduction
on how to implement the ISP1581 with hardware and
firmware guidelines on interfacing to a generic
processor with a 16-bit data bus width.

PHILIPS

Philips Semiconductors

AN1004 4

Revision history

ISP1581 Programming Guide

Rev Date Description
4.0 Mar 2004 e Updated Section 14.
e Updated Table 3-1.
e Applied the latest corporate template.
3.0 Aug 2003 e Added Section 7.
11 Nov 2002 e Section 11: changed the last sentence
e Changed USB 2.0 to Hi-Speed USB and USB 1.1 to Original USB
e Upgraded to the latest template
1.0 March 2002 First release.

Contact information

For additional information, please visit: http://www.semiconductors.philips.com/

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

2 of 45

ISP1581 Programming Guide

Philips Semiconductors AN 1004_4
]

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting
this product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER

PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS
SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS SUPPLIERS BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN IF
PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 3of45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

CONTENTS

1. N R0 10 Lo 1 [N TR 7
2. ISP1581 MICROCONTROLLER INTERFACE SIGNALS ...t 7
3. INTTIALIZING REGISTERS ...ttt ettt e e e e e e e e et s e e eseeeeaaaaaeeeeseeeesees 8
4. ISPAS8L FIRMWNVARE ...ttt et e ettt e e e e e et e e et eeeeeseeasaa s seeeaeessaaaasseeeeseesseen 9
4.1. PROGCESS FLOW ...ttt bbb bbb bbb e bbb bbb b bbb b e b s bbb bbb b e b e b e b e b e bebe bt et et et s 10
41.1. USB COMMANG PrOCESS FIOW.........covieieeieeieie st bbbttt 12

5. USB 2.0 CHAPTER 9 COMMAINDS ...ttt e e ettt s e e e e et e e e e e e e e abbaeeas 14
LT S 1= g =Tt =1] T 15
51.1. DIBVICE DESCHIPLONcvvvtuuerieessseeeessssseseessseeeeess e ssssss s8££ 8 R 16
51.2. DEVICE_QUANIIET DESCIIPLON ...vvvvruuierversneecessissesssssssessessssessssssssssssssssssssss s ssss s s ssss s sessss s 16
513 Configuration DesCrptor (High SPEEA)uvrveerreriersernnsssssisssesses 16

D12, SET ADDRESS ...viuivitiititiititite sttt bt st as s et b b st bt bbbt b b bbb bbb bR bR e e b eRs b et e b bR L RR bR e b bR b b e b e bbb b e b bs 17
LR =y o 1 U ST 19
6. DEVICE INITIATION AND HIGH-SPEED CONFIGURATIONoooiiieeieeeeeeeeee e, 20
7. FIRMWARE FLOW FOR SETUP TOKENS ... ot e e e e e e 22
7.1, SETUP TOKEN WITH DATA QUT STAGE ...ciiiiiiiiiie sttt bbb bbb bbb bbb bn 22
7.2. SETUP TOKEN WITH DATA IN STAGE ..ottt sttt sttt st b s b s st b s bbbt bs st bis 23
7.3, SETUP TOKEN WITHOUT DATA STAGEoiiititetiecieie ittt ss sttt ss sttt bbbt st sa sttt abesess et ses st bebesens s 24
7.4, FIRMWARE FLOW FOR DATA TRANSFER.....ciititi ittt sttt et bbb b bbb bbb bbbt b bbbt b bs bt sstabis 25
8. DMA TRANSFER SETUP ..ottt et e e e e e e e e e s e e e s s e s s b seeeseesebaaaaas 26
<00 R 9 1Y, == T 26
8.2. CONTINUOUS DMA TRANSFER WITH THE SETUP COMMANDcciiiiiitiiiite ettt 26
8.3. ISP1581 DMA INTERFACING WITH SH=3 .. .ottt sttt st bbb sttt st re 26
8.3.1. DMA MO CONFIGUIALIONvucvvveiuaisriiimisessssissesssssssssssssssssesssssssssssssssssssssessssssnssssssssnssssssssnies 26

9. ISP1581 STALL HANDLINGottt s e e e e s e e et s e e s e s e e saaba s eeeseesrbaaas 27
9.1. FUNGCTION STALL ..ottt bbb bbb bbb bbb e b s bbb bbb b e b e bbb s b e b st be bt ebe s 27
9.1.2. Stalling an Endpoint and EXiting from @ Stall ... ssees 28

9.2. PROTOCOL STALL 1.ttt b bbb bbb b bbb s e b e bbb R b b e b s b e b e b e b et s e b e bbb e b e b et et e b st et 29
10. VALIDATING ZERO-LENGTH PACKET AND SHORT-LENGTH PACKEToooveiiiiieeeeees 29
10.1. (@ 10 I 1T =Tox] N TR 29
10.2. [N DIRECTION 1.ttt sttt bbb bbb b b e bbb e b e b e b b e b e be b e b b ek Rb e b e b s b e b e b e b e b ab e b s b et e bbsbebe bt e b st et 29
L1021, USING DALA COUNTETcoovuueirieerseeeessseeeeesssseesesssseessssssessess s ess s8££ 88 8RR 29
10.2.2. Using Validate BUfer COMMEANG............oiiimrrriienmiimeeesieessisssssessssess s ssssssssssssssssssssssssssssssss s sssssssssses 29
10.2.3. ZEIO-LENGEN PACKELoorvviveeessisisessssisssssssesssssssssssss s sss s s 30

11. VALIDATING BUFFER ... ettt e et e e e e s e et e e e e s e e e ab e e s 30

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 4 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

12, CONFIGURING ENDPOINTS. ...ttt e e snre e e s annn e e s annes 30
13. PULL-UP RESISTOR ...ttt et e e e sttt e e e e s s e e e e e e e e s annnbnr e e e e e e e s snnrnnes 30
14. HI-SPEED USB TEST MONDEcooiiiiiiiiie ettt e e e e s e eeee s 31
15. APPLICATION DRIVERS AND APPLET DETAILS ...t 34
15.1. LOADING APPLICATION DRIVERSoiiuiieistiiit ettt 34
15.2. TESTING APPLET APPLICATION ..ottt bbb bbb bbb 35
16. VENDOR-SPECIFIC COMMAND PROCESS FIRMWARE ROUTINES........cccccociiiiiiene, 36
16.1. GET FIRMWARE VERSIONivriiit ittt bbb
16.2. GET AND SET TWIN CONFIGURATION
16.3. SETUP DMA REQUEST (SETUP BULK TRANSFER)ccutuuiuruueicsneseeseensseeseesssssssssssssesss et sss st ssssssssssssssessssnses 40
16.4. SETUP ISO TRANSFER. ...ttt etsitis ettt bbbt 42
17. APPLICATION DETAILS ...ttt ettt et e e st e e e s sbr e e e s sn b r e e e s nnnneeennnes 43
17.1. GET FIRMWARE VERSION ...iitiiiitiiiis bbb bbbt s 43
17.2. CLEAR CURRENT FILE ...ttt st 43
17.3. SET FILE INDEX .11eceerstsseeseies sttt es st es s 44
17.4. BULK TRANSFER SETUPciutitiiiisettissis et 44
18. REFERENGCES ...ttt ettt e e e e e ettt e e e e s e e bbbttt e e e e e s e e abb b et e e ae e e s e nbbebeeeaeeesannnbenes 45
FIQUIE 4-1: FIFMWAIE STIUCTUIE ..ottt s8Rttt 10
Figure 4-2: Example Of @ Data STIUCTUIE SET U ..ottt bbb 11
Figure 4-3: Firmware Routing for the Example......
Figure 4-4: Machine State for Setup Processing
Figure 5-1: Chapter 9 USB 2.0 Standard Command Process FIOWCHAIT ... 14
Figure 5-2: Get DESCHPLOT FIOWCRAIT ...tttk bbbt 15
Figure 5-3: Device Descriptor................
Figure 5-4: Configuration Descriptor
Figure 5-5: SEt AAAIrESS FIOWCNAIT ..ottt bbbt
FIQUIE 5-6: SEE FEALUIE FIOWCNAIT..........oiieece itttk
Figure 6-1: Reset Process Flowchart..............cccocvvinnne
Figure 6-2: Initialization of the ISP1581 Flowchart
Figure 6-3: Device Configuration and High-Speed Configuration FIOWCNAIT.............cccveiiininieeses e 21
Figure 7-1: Setup TOKEN WIth Data OUT STAGE.......cuuueririiriiriirierisesise sttt 22
Figure 7-2: Setup Token with Data IN Stage.......... . 23
Figure 7-3: Setup Token without Data Stage24
Figure 7-4: Firmware Flow for Data Transfer..........ccoeue.. .. 25
Figure 8-1: DMA Request Signal from ISP1581 to SH-3....... o 27
Figure 14-1:Test Mode Flowchart...........cccooonenrinincneirsineenns w32
Figure 15-1: Device Driver Loaded..... .34
Figure 15-2: Testing APPIet 35
Figure 16-1: Vendor-Specific Command Process Flowchart ... W 37
Figure 16-2: Get Firmware Version Command Flowchart 38
Figure 16-3: Get TWIN Configuration Flowchart..................... .. 39
Figure 16-4: Set TWIN Configuration Flowchart....... ... 40
Figure 16-5: SEtUp DMA REQUEST FIOWCKNAIT...........cuiiiiiiiiiieieiise bbb 41

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 5 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Figure 16-6: SEtUp I1SO Transfer FIOWCNAIT..........c.cuiiieie ettt 42
FIQUIE 17-1: GEE FIFMWAIE VEISION......iiiiiiiriisiiisistie sttt bttt bbb 18 bbbt 43
Figure 17-2: Clear Current File

FIQUIE 17-31 SEE FIIE INAEX ...ttt
FIQUIE 17-4 BUIK TTANSTEE SETUPD. ... vttt 44
Table 2-1: Microcontroller Interface Signal CONNECTION ..ottt 7
Table 2-2: Direct Memory Access (DMA) Signal CONNECTION ...ttt 7

Table 2-3: Configuration Setting
Table 3-1: Mode Register (0CH)
Table 3-2: Interrupt Configuration REGISTEr (LOH).........viuiiueiiiieieieiee bbb 8
Table 3-3: DMA Configuration Register (38H)
Table 3-4: DMA Hardware REGISTET (BCTH) ..ottt ss bbb bbbt
TaDIE 4-1: FIFMWEAIE SEFUCTUIEcouvuicee ettt s bbb bbbt

Table 5-1: Endpoint Configuration (in the alternative setting)....
Table 8-1: SH-3 SIgNal CONMNEBCTION ...ttt s ee bbbt b bbbt
TaADIE 17-1: DAL FOIMAL. ..ottt
Table 17-2: OPEratioN COMIMANGooiiieeeeiieieritreeeeseeese e ssese s ee s st e s eeb e s £ £ £ £ 8 bR £ 4R E bR bbbttt

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
All other names, products, and trademarks are the property of their respective owners.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 6 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

1. Introduction

The ISP1581 is a Hi-Speed Universal Serial Bus (USB) interface device that provides a flexible interface for various
ranges of microcontrollers. The high-speed microcontroller interface increases system throughput and reduces
processor utilization.

This document provides a brief introduction on how to implement ISP1581 with hardware and firmware guidelines
on interfacing to a generic processor with a 16-bit data bus width. Note: Do not confuse the hardware-related
descriptions in this document with those of the ISP1581’s Split Bus mode.

2. ISP1581 Microcontroller Interface Signals

The ISP1581 provides a flexible configuration for the microcontroller interface. For most microprocessors, no glue
logic is required.

The following tables provide the typical connections for ISP1581 pins.

Table 2-1: Microcontroller Interface Signal Connection

ISP1581 Signal Microcontroller Remarks

AD[0]' No connection AD[0] must be connected to the ground on the
ISP1581 side at 16-bit bus width

AD[7:1] Address bus lines 7 to 1 —

cs System-decoded chip selector Must be located in the 16-bit access bank

DATA[15:0]° 16-bit data bus —

DS /WR WR Use write strobe

INT Any interrupt input of the microcontroller —

(R/'W)/RD RD Use read strobe

Table 2-2: Direct Memory Access (DMA) Signal Connection

ISP1581 Signal DMA Controller Remarks

DREQ* DMA request input —

DACK® DMA acknowledge output —

DIOR DMA read signal Short to the ISP1581 RD pin when the DMA

Controller uses the same read strobe as the

microprocessor®

DIOW DMA write signal Short to the ISP1581 wR pin when the DMA
Controller uses the same write strobe as the
microprocessor’

EOT DMA transfer end output —

1 The 16-bit interface requires all address calls to be even. Therefore, AD[0] is not connected because some firmware compilers create
confusing word alignment codes.

2 AD[7:0] in the Generic Processor mode is an address bus. In the Split Bus mode, it is used as a multiplexed address and data bus to control
the ISP1581.

3 DATA[15:0] in the Generic Processor mode is used as a DMA bus as well as a system bus through which the ISP1581 is controlled. In the
Split Bus mode, however, it is used only as a DMA bus.

4 The DMA core of the ISP1581 can be used as a DMA master or a DMA slave depending on the initiating opcode (DMA Command register,
address: 30H). DREQ and DACK remain as high-Z until the DMA command is executed.

5 See note 4.

6 When ISP1581 is operating in the DMA ACK only mode, the read and the write signals must be connected to HIGH.

7 See note 6.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 7 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

The ISP1581 evaluates the pin configuration level at power-on reset to determine the operation mode

(see Table 2-3).

Table 2-3: Configuration Setting

ISP1581 Signal | Signal Level at Reset | Configuration

BUS CONF 1 Generic microprocessor interface; 16-bit data bus and 8-bit address lines'
MODEOQ 1 ISP1581 detects RD for the read operation and wRr for the write operation
ALE 1 If ALE is not used, pull it LOW

3. Initializing Registers
The firmware must initialize the ISP1581 registers to configure 1/O signal levels to match their system setups. The
following tables provide general initialization of the Mode, Interrupt Configuration, DMA Configuration and DMA
Hardware registers of the ISP1581.

Table 3-1: Mode Register (OCH)

Register Bit | Register Bit ISP1581 Signal Remarks
(Hex) Symbol
0C.7 CLKAON No corresponding | 0—turning off the clock reduces power consumption in the suspend
signal state
0C.3 GLINTENA INT 1—qglobe interrupt enable
0C.2 WKUPCS cs and 1—activates cs and wakes up the ISP1581 from the suspend state
WAKEUP (WAKEUP retains the same function for all settings)
0C.0 SOFTCT RPU 0—1.5 kQ resistor on the RPU pin is internally disconnected from DP
1—1.5 kQ resistor on the RPU pin is internally connected to DP
(performs Original USB full-speed function)

Table 3-2: Interrupt Configuration Register (10H)

Register Bit | Register Bit ISP1581 Signal Remarks

(Hex) Symbol

10.1 INTLVL INT 1—interrupt only generates a pulse on the INT pin
O—interrupt remains in the active state, if there is any interrupt event
pending

10.0 INTPOL INT 1—INT pin remains in or goes HIGH if there is an interrupt
O—INT pin remains in or goes LOW if there is an interrupt

1 Typically, AO is connected to the ground and the microcontroller accesses the ISP1581 at the16-bit data alignment.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

8 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

Table 3-3: DMA Configuration Register (38H)

Register Bit' | Register Bit ISP1581 Remarks
(Hex) Symbol Signal
38.7 DIS_XFER_CNT EOT 1—disabling the DMA counter will force the end of DMA transfer to fully
depend on the assertion of the End-of-Transfer (EOT) signal
38.6to4 BURST[2:0] DREQ and Determines the handshake of the DREQ signal
DACK
38.3to2 MODE[1:0] DIOR, Determines whether to use DIOR or DIOW, and how to work with
DIOW and DACK
DACK
38.0 WIDTH DATA[15:0] | 1—DATA[15:0] is used as a 16-bit data bus for DMA
0—only DATA[7:0] is used in DMA (DMA is in the 8-bit mode.)
Table 3-4: DMA Hardware Register (3CH)
Register Register Bit ISP1581 Signal Remarks
Bit’ (Hex) | Symbol
3C.7t06 ENDIAN[1:0] DATA[15:0] 00—little endian; MSB on DATA[15:8] and LSB on DATA[7:0]
01—big endian; MSB on DATA[7:0] and LSB on DATA[15:8]
3C5 EOT_POL EOT 1—EOT active level is HIGH
3C4 MASTER DREQ, DACK, Signal direction changes at the DMA master or slave function
DIOR and DIOW
3C.3 ACK_POL DACK 1—DACK remains HIGH when it is active
3C.2 DREQ_POL DREQ 1—DREQ asserts HIGH when it is active
3C1 WRITE_POL DIOW’ 1—DIOW active is at HIGH pulse and strobe is at the falling edge
0—DIOW active is at LOW pulse and strobe is at the rising edge
3C.0 READ_POL DIOR’ 1—DIOR active is at HIGH pulse and strobe is at the falling edge
0—DIOR active is at LOW pulse and strobe is at the rising edge

4. ISP1581 Firmware

USB is a master-to-slave structure. Figure 4-1 shows the firmware structure of the ISP1581, and Table 4-1
describes the various files.

The device does not initiate any transmission and responds only to requests from the host. In this architecture, the
firmware always waits for the host command before branching to process routings.

The mainloop.c file keeps track of the USB events that come from an interrupt and dispatches them to the

corresponding process routings.

1 DMA registers are reset at power-on reset, hardware reset, software reset and DMA reset.

2 DMA registers are reset at power-on reset, hardware reset, software reset and DMA reset.

3 Although, DIOR and DIOW can be set to different modes, RD and wR cannot be set to these modes. Therefore, the system must work
with different hardware connections and may require other logic for DMA.

4 See note 2.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

9 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Figure 4-1: Firmware Structure

Table 4-1: Firmware Structure

File Function

Name

mainloop.c | Loops and scans USB events; initiates the device and the system

isr.c Interrupt service routing; evaluates interrupt events and passes the event message to other processes

Chap9.c Contains code for the standard USB command that is used to establish a basic connection between the device and
the host

verify.c Contains vendor-specified command process for the demo application that is used to verify data integrity

is0.c Performs function similar to verify.c but sets up the transfer for isochronous (ISO) data

isa_dma.c Sets up the DMA Controller for the DMA data path between the ISP1581 and the local memory (The file name
depends on the microprocessor used.)

ISP1581.c The ISP1581 command set; the low-level layer forms access to the ISP1581 registers and the data port

hal4sys.c Hardware interface configuration for the break board between the ISP1581 board and the microprocessor main
board. With direct connection to the microprocessor, this layer is not necessary.

4.1. Process Flow

There are many ways in which data flows between the USB host and device. The path of data flow is called a ‘pipe’.

In the ISP1581 sample-testing applet (see Figure 15-2), the following types of pipes are used:

e Control pipe (also called the default pipe) for USB control transfers
e Bulk-IN and Bulk-OUT data pipes
e |ISO-IN and ISO-OUT data pipes.

The control pipe consists of the SETUP, control OUT and control IN endpoints. All other pipes contain an
endpoint each at a unique direction.

The USB host sets up and controls data flow in the data pipe by using the Setup command through the control
pipe. The command transfer is performed in three stages: Setup stage, Data stage (contents supplement command
parameters or other information) and Status stage. An example of the data structure set up is shown in Figure 4-2,
and the corresponding firmware routing is given in Figure 4-3.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004 10 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

T R B gth ACK
= 0xB4 1 V| D| Ox0C |Ox0000 |0x0471 5] Ox4B 10.0335 ps
ACK
0xB B8.567 ps

ouT EMNDP
0xB7 1 8] 1|00 40 1s 00 40 80 Ox59 764,100 ps
ERDP ACK
0x86 1 8] 1 Ox4B 5.757 ms
EMNDP ACK
020 1 2 0x4B 12.200 ps

CuT ENDPE || T
0xB7 1 2 o]
1 Data

U000: BS DF C3 B3 DC BC AC El BD AC E2 BD AS DE B3 AD DF Bb Al E4 BE Ab D7 BS 9F D3 AF 97 CF A5 91 DZ j
U0e4: D1 AB 91 C9 AS 8D C7 A3 BB CB A4 BC C7 A3 BB CB Al BA CA A3 BC CE A7 90 CE AV 90 CF Ab BF D7 AT §

R T=1 C Op ~m 31 On &0 6OF 90 &0 O @Sm s 67 790 nm 09 30 A0 G 9o oag 31 00 .1 Gmo 09 mn 0 30 nn 61 799 1

Figure 4-2: Example of a Data Structure Set Up

In this example, the SETUP packet indicates a vendor-specific command for the Bulk data transfer that is requested
by the host. The host sends a control OUT packet and gives information on how many bytes of data will be sent.
The device must facilitate DMA for the data transfer to the local memory. The control IN transfer completes the
whole setup transfer. This indicates that both sides have received the command and also the status of the process
of the command successfully. The Bulk-OUT transfer starts when the host and the device have made the
appointment.

10. Interrupt for the Status stage
(control in transaction interrupt)

9. Chap9_
ControlWriteHandshake()

1. Set up interrupt

3. Control data OUT interrupt

mainloop.c

2. SetupToken_Handler()

4. Control data OUT

read OUT

8. USBFSM4DCP_
CONTROLOUTDONE

5. Control OUT data all
received
DeviceRequest

11. return idle for next the
Setup command

andler()

6. dma_start()

7. DMA control configuration
OK

Figure 4-3: Firmware Routing for the Example

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 11 of 45

Philips Semiconductors AN 1004_4
]

ISP1581 Programming Guide

4.1.1. USB Command Process Flow

The USB host manipulates the device by using the control transfer in three stages: Setup, Data and Status.
Figure 4-4 contains the flowchart of the USB command handling.

The device must follow the various states of the host and reply according to the request.

The Data stage is optional; if there is no Data stage, the control transfer is indicated as a data OUT command and
the length of data is zero. The device must skip directly to the Status stage, and the direction of the Status stage is
IN. The device sends a zero-length packet for the IN token to allow the host to acknowledge that the device has
successfully received and executed the Setup request. In the ISP1581, the STATUS bit (bit 1) of the Control
Function register must be set to logic 1 to acknowledge the generation of ACK or NAK during the Status stage of
a SETUP transfer.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 12 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

IDLE
SETUPPROC
REQUESTPROC
DATA_IN
DATA_OUT
DATAOUTDONE
CTLRDHDSHAK
CTLWRHDSHAK
STALL

Device in the idle mode, waiting for the host command;

Set up process, Setup command received and interpreted;

Request process, command has been excused by the device;

Data IN, device has prepared the data as per the host request;

Data OUT, device is ready to retrieve data sent by the host;

Data OUT has completed, the amount of data specified in setup has been received;

Control read handshake, device has completed the control read command, will acknowledge the Status stage;
Control write handshake, device has completed the control write command, will acknowledge the Status stage;

Device indicates that it cannot complete the host command.

Chap 9 or Vendor

IDLE <

Setup interrupt

Setup Token?

Yes

SETUPPRO
C

Standard
Request?

Process

Direction IN? Yes—» Request Process

No

DATA_OUT

All data has bee
received?

Yes—» Chap 9 Process ———PM——

ize of Data O
is correct?

Vendor Request
Process

DATAOUTDONE

STALL

All data has
been sent?

Figure 4-4: Machine State for Setup Processing

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

13 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

5. USB 2.0 Chapter 9 Commands

The host adds a new device when a set of commands that is described in Universal Serial Bus Specification
Rev 2.0—enumeration—is completed. This section provides details on the firmware flow of the command
process.

CChap 9 Command Process>
@ Yes—b(Control IN, report status

No

Clear Feature? Yes—b(Control OUT, clear feature

No

Set Feature? Yes—b(Control OUT, set feature

No

Set Address? Yes Control OUT, set new addres
and enable bit

No

Get Descriptor? Yes—bQ)ontrol OUT, report descriptor

No

Set Descriptor? Yes—b@tall Control OUT, request erri

No
Yesa@ontrol IN, report configuration

Get Configuration?
Yes—(Control OUT, set feature

Set
Configuration?
No
GetInterface? YeS—>< Control IN, report interface
No
Set Interface? Yes Control OUT, set selected
interface

No

@ Stall Control OUT, requesD
Yes
< error

No

]

Stall
(Command out of range)

Figure 5-1: Chapter 9 USB 2.0 Standard Command Process Flowchart

ITTTTTTTT]

~

USB state = Handshake)

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 14 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

5.1. Get Descriptor

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format. Each
descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor followed by a
byte-wide field that identifies the descriptor type. The flowchart in Figure 5-2 provides a detailed process to
decode the host command and return appropriate descriptor at the host request.

For the exact format of the device descriptor, refer to the Universal Serial Bus Specification Rev. 2.0.

Get Descriptor Control _IN interrupt
(isr.c)

Yes

Get Device . . .
? -
Yes Speed High? Yes High-Speed Descriptor 5B stae ™
Data IN?
No No Full-Speed Descriptor
Yes
onfiguration o High-Speed
Descriptor? Yes Speed High? Yes Configuration Descriptor
Reached the
host length
No Full-Speed Configuration g enghse
No N
Descriptor
No

Other
Configuration

. Other-Speed
?
N Yes Speed High? Yes Configuration Descriptor
Rescriptor2
Stall

No No —

R t El

(Request Error) No

String Language Language String -
i t t
Descriptor? ves String? Yes Descriptor send ns;cl?:ts e

No
Vanufacture Yes Manufacturer String
String? Descriptor

No No

@ Yes Product String USB state = Data IN
Descriptor

4

—Yes—»

Yes
No
Wait for another interrupt
No erial Numbel . . .
Yes Serial String Descriptor
No

Yes Conflguratl_on String
Descriptor
v Interface String USB state = IDLE
es . (5
Descriptor
Device Qualifier Process other interrupt
Descriptor event

When Control IN length = 64 bytes
Length < 64
bytes?
No

(Control IN buffer size); the device must
USB state = Data IN

send a zero-length packet as a transfer
Figure 5-2: Get Descriptor Flowchart

onfiguratio
String?
No

No

USB state = Control IN
(Stall) (handshake Yes

delimitation.

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 15 of 45

Philips Semiconductors

AN1004 4

5.1.1. Device Descriptor

ISP1581 Programming Guide

The device descriptor provides general information on a USB device. This includes information that applies globally
to devices and their configurations. A USB device has only one device descriptor.

The transfer in Figure 5-3 is for the Philips ISP1581 eval kit device descriptor. The device descriptor is high-speed
capable and has a version number of 2.0 (0200H, third and fourth bytes in the reverse order).

ACK
0x4B 359.567 s
ACK
1]0000: 12 01 00 02 00 00 00 40 71 04 51 0§ 00 00 00 00 0x4B 54.333 ps

001s: 00 01

ACK
0B 4700 us

ACHK
1 0x4B 689.333 us

Figure 5-3: Device Descriptor
The following information can be derived from a typical device descriptor as given in Figure 5-3.

Device USB 2.0 (that is, Hi-Speed USB device)
Vendor ID 0471 (Philips)
Product ID 0881 (Philips Demo Eval Device)

No class specified for this device.

5.1.2. Device_Qualifier Descriptor

The device_qualifier descriptor provides information about a high-speed capable device that would change if the

device were operating at other speeds.

5.1.3. Configuration Descriptor (High Speed)

The configuration descriptor (see Figure 5-4) provides information on a specific device configuration. The ISP1581
eval kit consists of two interrupt endpoints and two ISO endpoints. The device with the ISO endpoint must
support an alternative interface because of the restriction on bandwidth. In case low bandwidth is available, the
USB host selects the default interface without the ISO interface or the interface that requests lower bandwidth.

00000

ACK

Ox4B

—

00oo: 0% 02 45 00 01 01 04 EO 01 09 04 00 00 00 00 OO0

ACK

Ox4B

56.300

001le: 00 05 05 04 00 01 0Os 00 OO0 00 05 07 05 51 03 10

0032: 00 DA 07 05 01 03 10 00 0A 07 05 82 0Z 00 0Z 00

0045: 07 05 02 02 00 02 00 07 05 §3 01 00 01 01 07 05

ACK

T
0]03 01 00 01 01

Ox4B

56.167 ps

ACK,
Ox4B 8.533 us

ACK
1 Ox4B 167.467 us

Figure 5-4: Configuration Descriptor

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004

16 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

The configuration descriptor includes interfaces and endpoint descriptors. The ISP1581 eval kit has one
configuration and one interface with an alternative setting. The default interface does not contain any endpoint.
The alternative interface consists of six endpoints as listed in Table 5-1.

Configuration 1
Interface 1 (with alternative settings)
Endpoint number 6

Table 5-1: Endpoint Configuration (in the alternative setting)

Endpoint Descriptor Number Direction Size

Interrupt endpoint 1 ouT 16 bytes
Interrupt endpoint 1 IN 16 bytes
Bulk endpoint 2 ouT 512 bytes
Bulk endpoint 2 IN 512 bytes
ISO endpoint 3 ouT 256 bytes
ISO endpoint 3 IN 256 bytes

5.2. Set Address

The device must acknowledge a new address when the command is completed. The validation of the new address
is done by the ISP1581. Once the ACK (of the Status stage) of the IN token is received, the device will
immediately respond to the new address (see Figure 5-5 for details).

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 17 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Set Address

Valid
address?

No— Stall
Set new address and
set new address enable bit

Control OUT
handshake

No

Handshake
complete?

Yes
+

New address activate

Yes

L

USB = IDLE

Figure 5-5: Set Address Flowchart

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 18 of 45

Philips Semiconductors

AN1004 4

5.3. Set Feature

ISP1581 Programming Guide

The recipients of the Set Feature could be a device, interfaces or endpoints. The interface feature of an eval kit is
not supported here; and therefore, it is stalled. As a high-speed device, the eval kit fully implements TEST_MODE
features, which are facilitated for the USB high-speed electrical test and other compliance tests (see Figure 5-6 for

details).
Set Feature Set ISO loop flag
wValue =
Enable remote
wakeup?
Yes
- peed high
Remp ient Yes and test selector
device?
okay?
No st
No Enable remote wakeup Set test mode flag
feature
Recipient \ ‘
endpoint?
No Control write < - >
handshake Stall

wValue = Set
endpoint stall?

Control write
completes interrupt

Yes
Clear Endpomt Status (Set test mode >
register
No
L

Control write
handshake

Yes
Set endpoint stall

USB states = IDLE

Figure 5-6: Set Feature Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004 19 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

6. Device Initiation and High-Speed Configuration

A device configuration is cleared by a hardware or software reset. A bus reset clears an endpoint configuration.
Therefore, the ISP1581 must be completely initiated at every reset.

When there is a power-on reset or software reset, the device will be disconnected and then connected again
(see Figure 6-1).

Power-on reset
/software reset

C)
C)

Connect device

C Device process loop >

Figure 6-1: Reset Process Flowchart

Figure 6-2 shows the events that require initialization of the ISP1581.

Bus reset interrupt
(isr.c)

High-speed find Initiate ISP1581
interrupt (isr.c)

Connect device

Figure 6-2: Initialization of the ISP1581 Flowchart

An example of the initialization that occurs after a bus reset is shown in Figure 6-3.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 20 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

Bus reset and
speed are high?,

Yes

Bus reset and
speed are high?

High-speed
detection?

Yes Yes

i

Clear bus reset
interrupt

C

C

Clear bus reset
interrupt

)

(Set high-speed flag >

C D

lear bus high-spee
|nterrupt

(Set high-speed flag >

lear bus high-spee
interrupt

C D

Initiation of ISP1581

Clear test mode

Set mterrupt
conflguratlon

<
C
C

Enable mterrupts

NN

Endpoints configuration

Yes

Configure bulk endpoint to

C

Speed high?
p 9 No

Configure bulk endpoint to 64
bytes

Set endpoint type an
enable

512 bytes

Clear address enable

address 0

Clear DMA registers

C
.

Set Mode register
(keep SoftConnect)

D
)
)
)

ther interrupt proces
if any

C)

Figure 6-3: Device Configuration and High-Speed Configuration Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004 21 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

7. Firmware Flow for Setup Tokens

7.1. Setup Token with Data OUT Stage

Wait for the setup

token interrupt T

Setup token
interrupt occurs

Yes

Initialize endpoint index to
the setup endpoint using
bit EPOSETUP

Read device request from the
Data Port register

Proceed to other
setup token [—No
process

Setup token
with data OUT

Yes

OUT token
ACK interrupt
occurs

No

Yes
|

Check endpoint data
length using the Buffer
Length register and start
reading OUT data

Check if all OUT
token has been
received

All OUT
received

Initialize endpoint index to the

control IN endpoint Yes

Set bit STATUS of the Control Function
register to terminate the setup token with ——
data OUT

Check for the control IN
endpoint interrupt

IN endpoint
interrupt occu

Yes

End

Figure 7-1: Setup Token with Data OUT Stage

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 22 of 45

AN1004 4

ISP1581 Programming Guide

Philips Semiconductors

7.2. Setup Token with Data IN Stage

Proceed to other
setup token process

Fill the IN endpoint
w ith 64 bytes

No

A4

Y

ait for IN token
Yes

le———No

Wait for the setup token
interrupt

Setup token
interruptoccurs

Yes

Initialize endpoint index
to the setup endpoint
using bit EPOSETUP

v

Read device requestfrom

the Data Port register

Setup token
w ith data IN

Yes

Initialize endpoint index to
the control IN endpoint
v
Firmw are determines
w hether thedescriptor
length is greater than 64
bytes

Descriptor
ngth > 64 byte

ACK interrupt

Yes

Next block of
data > 64 bytes

Fill IN endpoint w ith the
partial data and set bit
VENDP of the Control

Function register

Fill the IN endpoint w ith device request
data w ith buffer length or using bit
VENDP of the Control Function register

v

Set the STATUS bit of the

Check for control OUT
endpoint interrupt

Initialize endpoint index to the
control OUT endpoint

Control Function register
to terminate the setup
token with data IN

Setup Token with Data IN Stage

Figure 7-2:

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

23 of 45

Rev. 04 — 1 March 2004

Application Note

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

7.3. Setup Token without Data Stage

Waitfor setuptoken

interrupt <—‘

Setuptoken
{nterrupt occur;

Yes

Initialize endpoint index to the
setup endpoint using bit
EPOSETUP

v

Readdevice requestfrom the Data
Portregister

Proceed to other
setuptoken [aNo
process

Setuptoken
without data

Yes

¥

Initialize endpoint index to the control
INendpoint

v

Set bit STATUS of the Control
Function registerto terminatethe
setup token without data

v

Checkfor thecontrol IN endpoint
interrupt

—No

INendpoint
interrupt occur

Yes

End

Figure 7-3: Setup Token without Data Stage

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 24 of 45

Philips Semiconductors

AN1004 4

7.4.

Firmware Flow for Data Transfer

ISP1581 Programming Guide

ouT

Host sends transfer request

v

Device replies “OK” to
start the transfer

v

Host sends packet of
data to device

Y

Is this OUT transfer

or IN transfer?

v

OUT interrupts occurs,
Firmware reads the “OUT
buffer”

Is the data
transfer complete?

Yes

Data transfer is compete,
Firmware returns to the idle
state

Yes

—

Data transfer is compete,
Firmware returns to the
idle state

v

Device fills the buffer with
data, then replies to the
host with “OK” to start
transfer

v

Host gives IN token, and the
data from buffer is sent to the
host.

v

IN Interrupt occurs

Is the data
transfer complete?

No

Fill the IN buffer

Figure 7-4: Firmware Flow for Data Transfer

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

25 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

8. DMA Transfer Setup

8.1. DMA Reset

The DMA reset clears an incomplete DMA transfer. This restores DMA to its default value, as when the power
comes on. This is because there is no DMA stop command for generic DMA (GDMA). Therefore, some means to
restart a new cycle of the DMA transfer is required.

When the DMA reset command is issued, already validated packets will remain in the buffer and will be sent to the
host, if it is an IN endpoint. If it is an OUT endpoint, data will be cleared only when all the data in the packet are
read. Otherwise, the data in the whole packet will be retained in the buffer.

The DMA Clear Buffer and Validate Buffer commands help to discard the last packet read halfway or validate the
partially filled data in the buffer.

8.2. Continuous DMA Transfer with the Setup Command

Extra care is needed during the real-time tracking of data transfer between the host and the device because a
nonblocking data read or write function on the host translates itself into data packets that can be held over several
buffers, depending on the state of execution. For example, in the ISP1581 sample testing applet (see Figure 15-2),
each DMA Bulk OUT is preceded by a SETUP token. The host application initiates a back-to-back operation of the
Setup followed by the Bulk OUT command to mimic a continuous DMA flow.

From the device point of view, it may see a Setup command of a new cycle, although it is still processing the Bulk
data in its buffer from the previous DMA command. Therefore, the firmware programmer must take precautions
against such a condition.

8.3. ISP1581 DMA Interfacing with SH-3¢

The ISP1581 implements the I/O-based access mode; and therefore, some modifications must be made on its
signals to meet the requirements of SH-3 (see Table 8-1).

Table 8-1: SH-3 Signal Connection

Using DIOR and DIOW as DMA read and write strobe signals

ISP1581 Signal SH-3 Remarks
CcS Must not be accessed at the DMA transfer —

DIOR Connect to the read strobe of SH-3 —

DIOW Connect to the write strobe of SH-3 —

DREQ Reduced to less than two CLKIO of SH-3 See Figure 8-1
Using DACK-only mode

ISP1581 Signal SH-3 Remarks
CcS Must not be accessed at the DMA transfer —

DIOR Connected to V_. 3.3V DMA direction depends on the DMA command
DIOW Connectedto V.. 3.3V —

DREQ Reduced to less than three CLKIO of SH-3 See Figure 8-1
8.3.1. DMA Mode Configuration

SH-3 performs memory-to-memory DMA. The chip select signal will always be set for the DMA source and
destination. To avoid any confusion, you can map the ISP1581 into two memory locations: one for the PIO access,

1 If not indicated, SH-3 RISC in this document refers to 7709A.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 26 of 45

Philips Semiconductors AN 1004_4
]

ISP1581 Programming Guide

and the other for the DMA access. The system-decoded circuit only asserts cs to the ISP1581 at the PIO
memory. When performing DMA, set the address to the DMA location so that the ¢S signal is not asserted.

The ISP1581 DMA request signal lasts till the last access of the DMA transfer (see Figure 8-1). The ISP1581 DREQ
must not be directly connected to SH-3 because there is a mismatch with SH-3 timing. SH-3 samples two times
(that is, it starts two DMA cycles) at the beginning of a clock cycle, regardless of whether DMA has started or not.
This occurs even if DREQ is deasserted at the first transfer. In the burst mode, there may even be an extra
read/write cycle.

ISP1581 DREQ _\ /
SH-3 DREQ —\—/
SH-3 DACK \ 4
DIOR/DIOW

_/

ISP1581 DREQ
SH-3 DREQ
\ s a s a
R CLF R CLR

SH-3 CLKIO

ol
ol

Figure 8-1: DMA Request Signal from ISP1581 to SH-3

SH-3 must be configured in the cycle-steal mode, in which the DMA transfer facilitates an idle cycle of the
processor (either the edge or level mode because it presents no difference in the cycle-steal mode).

The ISP1581 must also be programmed in the single-cycle mode, in which DREQ is deasserted at the time of the
DMA transfer, and asserted when the transfer is complete and a new cycle is started.

9. ISP1581 STALL Handling

9.1. Function STALL

The Bulk or interrupt endpoint supports the set and clear Halt (known as function STALL) feature. When an
endpoint is stalled, it remains in the STALL condition until the host issues a clear Halt feature command through a
control pipe. When the Halt feature of an endpoint is cleared (UNSTALL), it clears the buffer (buffers in the case
of double buffer) and the data toggle bit is reset to 0 (PID DATAQ). The ISP1581 accepts the packet with PID
DATAO for an OUT token and sends a packet with PID DATAO for an IN token for the first transaction after
UNSTALL.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 27 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

9.1.1.1.Interrupt at Stall

When an endpoint is configured for the ACK only mode, there is no interrupt for a stalled transaction. This does
not cause any problem for the firmware because the host issues the CLEAR_FEATURE command for the stalled
endpoint.

In the Debug mode, you will get an interrupt. There is, however, no indication that the interrupt you are
processing is the one you expected, unless you are sure there is not much traffic and the latency of your firmware
is in service before there is any other traffic to the endpoint. The packet that is received later always overwrites
the information received earlier.

9.1.2. Stalling an Endpoint and Exiting from a Stall

Stall: You can stall an endpoint at any time. To do this, set the STALL bit in the Endpoint Status register. The Set
Endpoint Halt Feature command will also set an endpoint to a Stall condition.

Example: | SP1581_Set Endpoi nt St at us(bEPI ndex, epctlfc_stall);
The Stall function has the highest priority. Therefore, the host will receive a stall irrespective of whether there is
any packet in buffers for the IN endpoint or they are empty for the OUT endpoint.

Exit (Clear): You must clear the STALL bit of the endpoint. Besides, you must disable the endpoint and enable it
again to clear data remaining in the buffer, if any.

Example:

voi d Chap9_d ear Feat ur e(voi d)
{

unsi gned char endp;
unsi gned char bReci pi ent = Control Dat a. Devi ceRequest . bmRequest Type & USB_RECI Pl ENT;
unsi gned short wreature = Control Dat a. Devi ceRequest . wal ue;
unsi gned short WEPCFG
unsi gned char dir = Control Data. Devi ceRequest . bmRequest Type & SB_REQUEST_DI R_MASK;
if(dir)

Chap9_St al | EPOI nCont r ol Read() ;

if(Control Dat a. Devi ceRequest.wLength == 0)
swi t ch(bReci pi ent)
case USB_RECI PI ENT_DEVI CE:
11

case USB_RECI PI ENT_ENDPOI NT:
i f(Control Dat a. Devi ceRequest. w ndex & USB_ENDPQO NT_DI RECTI ON_MASK)
endp = (Control Dat a. Devi ceRequest. W ndex*2 + 1);
el se
endp = (Control Dat a. Devi ceRequest . Wl ndex*2) ;

f (WFeat ure == USB_FEATURE_ENDPO NT_STALL)
a

/ ear the data toggle bit to (set to 0) and clear buffers before clear stall of
/ the endpoint.
WEPCFG = | SP1581_Get Endpoi nt Confi g(endp);
| SP1581_Set Endpoi nt Confi g(endp, 0); // disable endpoint *
/1 Enabl e endpoint, clear the buffer and set the data toggle bit to O.
| SP1581_Set Endpoi nt Confi g(endp, WEPCFG) ;
| SP1581_Set Endpoi nt St at us(endp, O0); Il clear the Stall condition of the

i
{
I
!

/ / endpoi nt .
Chap9_Control Wit eHandshake();
el se
t Chap9_Stal | EPOlI nControl Wite();
br eak;
defaul t:

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 28 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Chap9_Stal | EPOlI nControl Wite();
br eak;

}

el se

Chap9_Stal | EPOlI nControl Wite();

Note: Disabling and re-enabling an endpoint does not affect the endpoint memory (buffer) allocation. All the other
endpoints operate as usual.

9.2. Protocol Stall

Protocol Stall is applicable only to control pipes. The ISP1581 supports only one control pipe that consists of the
SETUP, control OUT (endpoint index 0 OUT) and control IN (endpoint index 0 IN) endpoints. It is also the
default control pipe.

Although both the control OUT and control IN endpoints in the Endpoint Status register have a STALL bit each,
physically these bits refer to the same location. There is only one register bit inside the ISP1581 that can be
accessed from different entries. This bit can be set either from control OUT or control IN. When it is set, the IN
and OUT tokens from the host to the endpoint 0 (OUT or IN) will get a Stall reply. The Stall condition lasts till
the setup transaction.

During a setup transaction, data in the control OUT and control IN endpoints are flushed and both the data toggle
bits are set to 1.

The control pipe does not have the Halt feature (function Stall).

10. Validating Zero-Length Packet and Short-Length Packet

10.1. OUT Direction

For the OUT direction, the Data Counter register reflects the received packet length (in bytes). If the packet
length is odd and the device is configured in the 16-bit mode, the last byte to be read is in the lower position and
the higher byte is padded with unknown data.

10.2. IN Direction
For the IN direction, there are two ways to validate a zero-length packet or a short-length packet.

10.2.1. Using Data Counter

The data counter is a byte counter. In the data counter, write the number of bytes of the packet. Then, select the
data port and fill it with the packet data. When the data length reaches the value stored in the data counter, the
packet is automatically validated. When the value is odd, it means that the length of the packet to be sent is odd in
bytes. The last write strobe of the packet validates the lower byte and discards the higher byte.

10.2.2. Using Validate Buffer Command

The Validate Buffer command applies only to the even byte short-length packets. When the Validate Buffer
command is issued, the packet is validated and the length of the packet is recorded by the ISP1581.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 29 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Note: If the amount of data written is equal to the buffer length and is followed by a Validate Buffer command, an
extra zero-length packet is validated.

10.2.3. Zero-Length Packet

Using Data Counter
Writing zero to the data counter validates a zero-length packet.

Using Validate Command

Validating the buffer without filling any data also validates a zero-length packet. If data written to the Data Port
register reaches the length of the buffer and a Validate Buffer command is immediately issued, then a full-length
packet and a zero-length packet are validated. In this case, the sequence of the packet is the full-length packet,
followed by the zero-length packet.

11. Validating Buffer

If the IN endpoint is configured in the double-buffer mode, the only means for the firmware to know whether
there is any empty space for new data is by reading the interrupt bit. Therefore, it is not recommended to fill
more that one full-length packet data at a time. The firmware must maintain a counter to record the length of data
written. If more than a full-length packet of data is written and another buffer is not empty, the ISP1581’s behavior
becomes unpredictable.

12. Configuring Endpoints

When configuring endpoints, the following sequence must be followed:
1. Disable all endpoints from 2 OUT to 7 IN.

2. Configure the buffer length of all endpoints from 2 OUT to 7 IN. (The endpoints that are not used can be
filled with ‘0’s.)

3. Set the Endpoint Configuration register from 2 OUT to 7 IN. (The endpoints that are not used can be set
to 0.)

If an endpoint is disabled but the buffer length of the endpoint is not zero, RAM is reserved for the endpoint. The
amount of RAM instantiated for all endpoints must not exceed the total amount of RAM size. When the amount of
RAM instantiated is more than the total RAM size, the final assignment of RAM to endpoints is not executed.

13. Pull-Up Resistor

The 1.5 kQ pull-up resistor is connected to the V., ., output so that the downstream port can detect a high-
speed or full-speed device plug-in. The resistor must not provide current to the DP when V, is not powered. For
example, when the downstream port is powered down, the microcontroller must poll on V, so that whenever

power on V, is removed it disconnects the pull-up resistor.

The pull-up resistor must be connected to the RPU pin at one end and to the 3.0 V to 3.6 V DC at the other end.
When the ISP1581 switches to the high-speed mode, it removes this pull-up resistor. Therefore, it is not
recommended to directly connect the resistor to V. Alternatively, you can connect the pull-up resistor to a
voltage source that is derived or controlled by V, so that it will be turned off when V, is removed.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 30 of 45

AN1004 4

Philips Semiconductors
ISP1581 Programming Guide

14. Hi-Speed USB Test Mode

For an IN token, a Hi-Speed USB device must support four test modes: Test_J, Test_K, Test_Packet and
Test_ SEO_NAK.

The Hi-Speed USB host initiates the test mode by using the SET_FEATURE command. The device must complete
the Setup command and then go into the test mode within 3 ms.

For the test packet, the firmware must fulfill the test pattern of the control IN endpoint before it sets the test
enable bit. Once the test mode is set, the device must be disconnected from the host and a proper termination for
the signal measurement must be done manually. The flowchart in Figure 14-1 shows the details of the Hi-Speed

USB test mode.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 31 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

Control write completes
interrupt (isr.c)

Test mode
set?

Yes

]

flag

C

Clear test mode flag)

I
Yes

No

No

No

pattern
sent?

Yes

Test mode J?

Test mode K?

Test mode
SEO_NAK?

est mode

Yes—Gorce high-speed Test_‘}

Yes—»(Force high-speed Test_K}

Force high-speed
Test_SE0_NAK

-)

No

< Clear test mode flag

Write test packet patter
to control IN endpoint

C

packet

Force high-speed test

)
)
)

< USB states = IDLE)

Figure 14-1:Test Mode Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

32 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

Structure of the test pattern
USB_TESTPACKET bTest Packet =
{

/1 0x00, 0x00,
I 0x00, 0x80, // SYNC pattern will be added by |SP1581
0xc3,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, Oxaa,
Oxaa, Oxaa,
Oxaa, Oxaa,
Oxaa, Oxaa,
Oxaa, Oxee, //aa*4
Oxee, Oxee,
Oxee, Oxee,
Oxee, Oxee,
Oxee, Oxfe, [/ee*4

oxff, Oxff,

Oxff, Oxff,

oxff, Oxff,

oxff, Oxff,

oxff, oxff, /[/FF11
oxff, Ox7f,

Oxbf, Oxdf,

Oxef, Oxf7,

oxfb, Oxfd,

oxfc, Ox7e,

Oxbf, Oxdf,

oxef, 0Oxf7,

0xfb, Oxfd,

Ox7e,

Oxb6, Oxce /1l CRC

/1 oxff, Oxf7 /1 Bit stuff as end of the packet added by | SP1581.

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 33 of 45

Philips Semiconductors

AN1004 4

15.

ISP1581 Programming Guide

Application Drivers and Applet Details

15.1. Loading Application Drivers

When the device reports a Philips testing device, the driver for the testing applet is loaded (see Figure 15-1). The
driver establishes as many pipes as the device configuration descriptor reports.

g Camputer Management (Local)
Elﬁ& Systern Tools

[#-{f] Event Viewer

ﬁ Petformance Logs and Alerts
AL Shared Falders

Device Manager

[+-#7 Local Users and Groups
[—]& Skarage

[_2) Disk Management

@ Disk. Defragmenter
=) Logical Drives

@ Remaovable Storage
[EI--& Services and Applications

loix
EarEEEEEIEE Y |
Tree I Programmable interrupt controller ;I

+-52 Standard Floppy disk contraller
E| Standard PC
=3 Pl hus
i@ 3Com 3C918 Integrated Fast Ethernet Contraller {3C9058-TX Compat
¥ 19 Tntel 3237 1AB/EE PCI bo IS4 bridge (IS4 mode)
Intel 52371 AB/EE PCI bo USE Universal Hosk Controller
- Intel 524436 Pentiumir) II Processor bo AGP Controller
- Intel 524436% Pentium(r) II Processor to PCI Bridge
+|-5=29 Intel(r) 82371 AB/EE PCI Bus Master IDE Controller
EIG&P Philips EHCI USE 2,0 Controller {Minipart)
=62 USE 2.0 Roat Hub
%9 PHILIPS ISP1581 USE Isochronous IO Test
Eﬂ--% Standard OpenHCD USE Host Contraller

[#-& Skandard OpenHCD USE Host Contraller
\> STIF Hardware Access Driver

B System board

Syskem CMOS real time clock

-] System speaker

Swskem timer

-2 Yideo Codecs

oy

Figure 15-1: Device Driver Loaded

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

34 of 45

Philips Semiconductors

AN1004 4

15.2. Testing Applet Application

For testing, a Philips device verification applet is used (see Figure 15-2). There are several vendor-specified
commands in the firmware (see Section 16).

ISP1581 Programming Guide

#=D13Test

 Interrupt In [Endpaint 0

—Scan Test BULK [Endpaint 3]

[FIPEQZ =l
Bytes Transfered . E4000 bytes
Current Rate 21333k bytes/s
Awerage Rate 21333 bytes/s
b awirnal A ate 213323k bytes/s
Start I Stop |

Buffer Size : |E4UDD
Repeat Times : I.']

"Generic Out [Endpoint 1]

o1 o2 o3| o4l

¥ D Enabled

Configuration Infa |

Buffer Size : IE"-WIIJD
Repeat Times : I-'l

Srzan Test 150 [Endpoint 3]

[FIPEDS -]

Butes Trangfered :

Current Rate :
Average Rate :
aximal A ate :
Start | Stop |
Buffer Size : |1 oog

Repeat Times : ID

—Print Test BULK, [Endpoint 21— [Loopback BULK
PIPED3 - Static
g —— Pazsed : 1843
k :
E.'r' &5 f:'ls ere £4000 bytes Failed - 0
urrent Rate
ZICELE K bydesils Butez Compared : 117,95
Average Rate : 2133 3K bytes/s
MasimslRats: 21333 bytesss | | Fopeat Times: [
Buffer Size : |54|j[||:|
Start | Stop I

Start ¢ Stop |

— Print Test |50 [Endpaint 2]

IF'IF'EDE "I

Butes Transfered
Current Rate
Awerage Rate :

b amimal Fate

Start | Stop |

Buffer Size : I'IDEID
Repeat Times ID

— Loopback 150

Paszed :
Failed :
Bytes Compared :

Fepeat Times : |-1
Buffer Size : I'I 7

Start | Stop |

%]

PHILIPS

E it |

Figure 15-2: Testing Applet

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

35 of 45

Philips Semiconductors AN 1004_4

16.

ISP1581 Programming Guide

Vendor-Specific Command Process Firmware Routines

Several vendor-specific commands are used for setting up the Bulk and ISO data. Figure 16-1 shows the flowchart
for the vendor-specific command process. These commands are categorized as:

List of w

Get firmware version (windex = GET_FIRMWARE_REQUEST)

Set and Get TWIN configuration (windex = TWIN_CINFIGURATION)

Write and read Bulk data to or from the device (windex = SETUP_DMA_REQUEST)
Set up the ISO transfer (bmRequest = EnablelsoMode).

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

Index for the Bulk data transfer:
SETUP_DMA_REQUEST 0x0471
GET_FT RMAARE_VERSI ON 0x0472
TW N_CONFI GURATI ON 0x0473

CLEAR_CURRENT_FI LE 0x0006

CURRENT_FI LE_T NDEX 0x0001
CURRENT_FI LE_SI ZE 0x0002
CURRENT_FI LE_| NDEX_LENGTH 0x01
CURRENT_FI LE_S| ZE_LENGTH 0x04

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

36 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

IDLE

Setup handler

Data OUT?

Yes

Data OUT stage

All data
received?

Yes

Data format
okay?

Yes
Copy data OUT

stucture
Control.Data

device
request?

ISO enable?

Yes

No

Read/Write
register?

=z
' o '

Stall

Chap 9 command
process

Stall

Setup I1SO transfer

Stall (Other
commands not
defined)

Vendor
command IN
direction?

No

Setup DMA
request?

Setup DMA request

Yes (Bulk transfer setup)

No

Set TWIN
configuration?

Set TWIN
Yes) -
configuration

Get firmware
version?

Yes Report f|rmwa re
version
No

Get TWIN
configuration?

Report TWIN
Yes))
configuration

Figure 16-1: Vendor-Specific Command Process Flowchart

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

37 of 45

AN1004 4

Philips Semiconductors
ISP1581 Programming Guide

16.1. Get Firmware Version

When the test applet is started, it sends a vendor request for a device firmware version that is used to identify
which eval kit is being used, and also to select the proper function to be tested. Figure 16-2 shows the flowchart of

the Get firmware version command.

C Get firmware version >

@ No—

Yes

No—

Yes
+

Single byte packet transfer,
USB state = Handshake

Stall

Figure 16-2: Get Firmware Version Command Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

38 of 45

Application Note Rev. 04 — 1 March 2004

Philips Semiconductors

AN1004 4

16.2. Get and Set TWIN Configuration

Before the Bulk data transfer, the test applet performs a sequence of configurations (similar to what a scanner
does during setup). The complete data transfer is broken into several pages, each of which is up to 64 kbytes. The
applet can also retrieve the configuration settings for verification.

ISP1581 Programming Guide

The flowcharts of the Get TWIN Configuration and the Set TWIN Configuration are given in Figure 16-3 and
Figure 16-4, respectively.

Get TWIN configuration,
check TWIN command
(wValue)

TWIN_
CURRENT_FILE_
INDEX?

Yes 1 byte pac!(et indicates
file index.

No

Yes —C

bytes packet indicates
transfer size.

No

:

S

CUSB state = HandshakeD

Figure 16-3: Get TWIN Configuration Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004 39 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

Set TWIN configuration,
check TWIN command
(wValue)

TWIN_CLEAR
CURRENT _FILE?

Yes{(

Clear TWIN settings
file index, file size, etc.)

No

WIN_CURREN
_FILE_INDEX?

Yes{

Set TWIN current file
index

No

Yesﬂ(Set TWIN current file si29

No

> USB state =
C Stall) USBFSM4DCP_CONTRO
LOUTDONE

Set ISP1581
acknowledge for Control
Write (Endpoint 0 IN)

C

SB state = Control Write
Handshake

Figure 16-4: Set TWIN Configuration Flowchart

16.3. Setup DMA Request (Setup Bulk Transfer)

The Setup DMA request consists of the following information:
e Data size
o Direction of data transfer; either IN or OUT
e Page index; indicates the page sequence
e Data location; supports multiple page transfer, each ha

Figure 16-5 shows the flowchart for the Setup DMA request.

s a file index.

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note

Rev. 04 — 1 March 2004

40 of 45

Philips Semiconductors

AN1004 4

ISP1581 Programming Guide

SETUP_DMA_REQUEST
N

DMA channel is
IDLE?

Yes
SETUP_DMA

Command for
DMA?

[o}

Yes
CONFIGURE_DMA

DMA_START
(ISA DMA Controller
configuration)

SETUP_IO

Use PIO

Set up OUT data size and
incremental pointer

Send a packet and
increase pointer

All data sent?

Configure ISP1581 DMA OUT
endpoint, disable DMA endpoint
interrupt, issue DMA read command.

Wait for buli(OUT data
(isr.c)

All data received?

Configure ISP1581 DMA OUT
endpoint, disable DMA endpoint
interrupt, issue DMA write command.

No ‘

interrupt)?

DMA end (EOT

DMA = DMA_IDLE

Figure 16-5: Setup DMA Request Flowchart

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note

Rev. 04 — 1 March 2004

41 of 45

Philips Semiconductors AN 1004_4

ISP1581 Programming Guide

16.4. Setup ISO Transfer
The Setup ISO transfer details are given in the flowchart in Figure 16-6.

< Set ISO transfer >

< Enable ISO mode > @aiting for ISO OUT data
No

ISO_LOOP? Yes—»(Set ISO loop flag >—
No
C Read ISO data >
Yes—< Set ISO OUT flag }
No
ISO_IN
Yes
No Write ISO data to ISO IN
L endpoint
< Stall)
Write ISO data to ISO-IN (IDLE)
endpoint

Gontrol Write HandshakeD

Figure 16-6: Setup ISO Transfer Flowchart

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Application Note Rev. 04 — 1 March 2004 42 of 45

Philips Semiconductors AN 1004_4

. ISP1581 Programming Guide

17. Application Details

Detailed information on the vendor-specified commands used for testing application is given in the following
sections.

17.1. Get Firmware Version
The transfer illustrates the complete transaction of the Get firmware version command.

ErDP
| 0xB4 1 0
ACK
096 1 0 1] 21 4B 37.833 ps
ACK
OB 5.935 ps
ouT ENDP ACK
0xB7 1 0 1 OB 15.326 ms
Figure 17-1: Get Firmware Version
The following information can be derived from Figure 17-1.

ACHK
OB 377.300 ps

Request Index: 0472
Request Value: OH

Requests firmware version of the device. The device reports any value.

17.2. Clear Current File
The transfer illustrates the complete transaction of the Clear Feature command.

ErDP
= O0xB4 1 0
ouT =
087 1 "] 1] 01 069 488.000 us
= ACK
056 1 0 1 0B 5.298 ms

Figure 17-2: Clear Current File
Figure 17-2 provides the following information:

Request Index: 0473
Request Value: 0006H

This command requests the device to clear the stored image to free space for a new image.

ACK
Ox4B 11.067 ps

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 43 of 45

Philips Semiconductors AN 1004_4

. ISP1581 Programming Guide

17.3. Set File Index
The transfer illustrates the complete transaction of the Clear Feature command.

ErRDRP 2 (bR st wiValue fndlnd gth ATk
OxB4 1 o] D-=H |V |D 0x0C 0x0001 | Ox0473 1 O=4B 372867 ps
ACK

11 o1 Ox4B 51.700 s

ACTK

Ox4B 7.233 s
ATK
Ox4B 5.809 ms

Figure 17-3: Set File Index

I

As can be seen in Figure 17-3:
Request Index: 0473
Request Value 0001H

Sets the device to prepare the file index of images to 1.

17.4. Bulk Transfer Setup
Get Image data command in the Philip Scan demo.

? bRaques ‘alus wiln wlLength ACHK
5 OxB4 1 H-=D | v |[D| Ox0C | 0x0000 | 0=0471 5 0x4B 9,733 us
ACK,
0B 5.500 s
1|00 co 1c 00 40 51 0259 2028 ms

Figure 17-4: Bulk Transfer Setup

The following information can be derived from Figure 17-4.
Request Index: 0471
Request Value: OH

The control write transfer to encapsulate data transfer.

The Data format in Figure 17-4 is explained in details in the following tables.

Table 17-1: Data Format

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
LSB — MSB LSB MSB —
00 Oc 1c 00 40 81
Address Offset of Image Current Transfer Length Operation Command (see Table 17-2)

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004 44 of 45

Philips Semiconductors

AN1004 4

Table 17-2: Operation Command

ISP1581 Programming Guide

Bit 7 6 |5 |4 |3 |2 |1

Bit O

1—use DMA for transfer Not used
0—microprocessor operates on the buffer

1—scan image (Bulk data IN)
0—store image data to device (Bulk data OUT)

18. References
e ISP1581 Hi-Speed Universal Serial Bus interface device data sheet

e |SP1581 PC Eval Kit User’s Guide
e |SP1581 Scanner Eval Kit User’s Guide

e Universal Serial Bus Specification Rev. 2.0.

© Koninklijke Philips Electronics N.V. 2004. Al rights reserved.

Application Note Rev. 04 — 1 March 2004

45 of 45

	1. Introduction
	2. ISP1581 Microcontroller Interface Signals
	3. Initializing Registers
	4. ISP1581 Firmware
	4.1. Process Flow
	4.1.1. USB Command Process Flow

	5. USB 2.0 Chapter 9 Commands
	5.1. Get Descriptor
	5.1.1. Device Descriptor
	5.1.2. Device_Qualifier Descriptor
	5.1.3. Configuration Descriptor (High Speed)

	5.2. Set Address
	5.3. Set Feature

	6. Device Initiation and High-Speed Configuration
	7. Firmware Flow for Setup Tokens
	7.1. Setup Token with Data OUT Stage
	7.2. Setup Token with Data IN Stage
	7.3. Setup Token without Data Stage
	7.4. Firmware Flow for Data Transfer

	8. DMA Transfer Setup
	8.1. DMA Reset
	8.2. Continuous DMA Transfer with the Setup Command
	8.3. ISP1581 DMA Interfacing with SH-3 1
	8.3.1. DMA Mode Configuration
	9.1. Function STALL
	9.1.1.1.Interrupt at Stall
	9.1.2. Stalling an Endpoint and Exiting from a Stall

	9.2. Protocol Stall

	9. ISP1581 STALL Handling
	10. Validating Zero-Length Packet and Short-Length Packet
	10.1. OUT Direction
	10.2. IN Direction
	10.2.1. Using Data Counter
	10.2.2. Using Validate Buffer Command
	10.2.3. Zero-Length Packet

	11. Validating Buffer
	12. Configuring Endpoints
	13. Pull-Up Resistor
	14. Hi-Speed USB Test Mode
	15. Application Drivers and Applet Details
	15.1. Loading Application Drivers
	15.2. Testing Applet Application

	16. Vendor-Specific Command Process Firmware Routines
	16.1. Get Firmware Version
	16.2. Get and Set TWIN Configuration
	16.3. Setup DMA Request (Setup Bulk Transfer)
	16.4. Setup ISO Transfer

	17. Application Details
	17.1. Get Firmware Version
	17.2. Clear Current File
	17.3. Set File Index
	17.4. Bulk Transfer Setup

	18. References

